影像测量仪是近年来发展非常迅速的几何量光学检测仪器, 它是一种基于光学投影原理, 结合现代光电技术和计算机处理技术, 完成对试件边缘轮廓瞄准并实现长度和高度尺寸测量的三维光学坐标测量仪。
➤影像仪测量原理它是一种基于光学投影原理, 结合现代光电技术和计算机处理技术, 完成对试件边缘轮廓瞄准并实现长度和高度尺寸测量的三维光学坐标测量仪。该仪器可以高效地检测各种形状复杂工件的轮廓和表面形状尺寸、角度及位置, 特别是精密零部件的微观检测与质量控制, 适用于产品研制开发、品质批量检测等领域。
备注:影像测量仪的光学原理与普通投影仪很类似, 区别在于影像前者被测件的轮廓影像被CCD 传感器接收并由计算机进行图像采集和处理, 后者则直接把影像投射到投影观测屏, 轮廓对准有操作者的人眼完成,因而导致两者测量精度和自动化程度相差很大,另外还有高度测量的功能。
➤ 影像仪的特色一般具有较大的测量范围, 通常配备有( 0. 7 @ ~ 4. 5 @ )的变焦物镜, 照明光源除了常见的底光和顶光外, 还有环形照明光, 适合于底光和顶光都不能有效照明时应用。
影像测量仪的测量可以是单轴、二维平面的测量,也可以是三维空间坐标的测量, 测量时先对焦,取点,然后计算处理。读数来自于标尺即光栅系统, 对焦对准依靠光学系统,还有一个直接影响测量效果和精度的照明光源,因为,基于影像方法测量的仪器, 如果被测件不能被有效正确的照明,则测量的结果显然要偏离其真实尺寸。除前述因素外,环境条件也是制约测量精度不可忽视的因素。
在这几种因素中,前四项误差, 是硬件误差,在仪器制造过程中已经形成并固定下来, 一般无法改变;温度影响带来的误差,必须通过控制测量室的温度和等温过程来减小其影响。后面一项则常被忽视,而在实际测量中,当光源照明条件改变时,直接影响被测工件的照明效果和影像质量,主要是因为影像测量仪的图像是通过CCD 接收,尽管CCD具有自动调节增益的功能,但当亮度过大时即失去调节功能,导致被测工件影像在缩小,当亮度过低时,工件影像反而变大,这种影响,对于测量具有重复图形结构之间的间距时,只要整个测量过程中照明条件保持不变,其影响可以忽略,因为每个重复图形结构都同时在变大或变小,间距的测量计算直接消除了影像变形的影响,如测量玻璃尺、网格板刻线间距;除了这种特殊情形外,如测量圆的直径、工件的长度和宽度,都将带来明显的误差。
在以影像测量工件样品结构的几何尺寸时,光照明条件的改变将会直接影像被测尺寸,如线宽、圆直径及其他几何形位公差,因次要确保取到的边界点是产品需要检测的边界,在高精度测量中,这是导致测量不确定度增大的关键因素,应引起足够重视。